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ABSTRACT

Large space structures are difficult to control because of the high order of their

mathematical models. The high order mathematical model makes the use of a reduced

order model to control the structure desirable. The Karhunen-Loeve expansion along

with Galerkin's method is used to generate a reduced order model. A control algorithm

is achieved by applying linear quadratic regulator theory to the reduced order model.

The Karhunen-Loeve basis functions or mode shapes must first be found to identifI

the reduced order model. Previous results have shown that in the limit as the structural

damping approaches zero the Karhunen-Loeve mode shapes and natural mode shapes

converge. Numerical techniques are applied to evaluate the structural damping required

for convergence. Once the Karhunen-Loeve mode shapes are determined, the reduced

order control model is applied to the full order system. The performance of various

Karhunen-Loe~e models is compared by measuring the modal energies in the controlled

and uncontrolled modes.
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THESIS DISCLAIMER

The reader is cautioned that computer programs developed in this research may not
have been exercised for all cases of interest. While every effort has been made, within

the time available, to ensure that the programs are free of computational and logic er-

rors, they cannot be considered validated. Any application of these programs without
additional verification is at the risk of the user.
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I. INTRODUCTION

A. LARGE SPACE STRUCT RES

The liglhtweight, fl' xible materials used to construct large space structures (LSS),

like a space station, are lightly damped and when disturbed will vibrate for a consider-

able amount of time. This prolonged vibration could jeopardize the structural integrity

of the structure or disturb experiments on the LSS. The purpose of this thesis is to study

the effects of controlling this sLructural vibration with a reduced order model, specifically

a Karhunen-Loeve reduced order model.

B. PROBLEM APPROACH

The solution of the vibration control problem requires the use of a mathematical

model that describes the behavior of the system in time. The space structure is modeled

as a combination of small plates of unit mass connected to form the complete structure.

The vibrational miotion of these plates can be modeled as a set of coupled damped har-

monic oscillators. Usine modal analysis the mathematical model of the structure can

be decoupled to yield a set of uncoupled simultaneous second order differential
- eq~ uat iofl5.

For LSS this model is of very hich order, making control design difficult. It is

therefore desirous to use a reduced order model (ROM) to control the structure. A

control system is designed for the LSS using the Karhunen-Loeve (reduced order) model.

The control system is then applied to the LSS after it has been disturbed by an impulse.

The performance of this system and a control system based on a modal model, truncated

by frequenc-. are compared.

The LSS used in this thesis is a dual keel space station, see Figure 1 on page 2. A

mathematical model of this space station is provided courtesy of McDunnel Douglas

Astronautics. A computer simulation of this space station is used to determine the ef-

fectiveness of the control system. Karhunen-Loeve (reduced order) models of increasing

size are simulated and the modal energies are calculated and used to determine the rela-

tive effectivenzss of the control models. These results will then be compared to results

obtained for the modal model truncated by frequency.



Figure 1. Representation of a Dual Keel Space Station from [Ref. 1: p. 11

C. ORGANIZATION

" Chapter II is a statement of the mathematical model of the space station.

* Chapter III discusses the Karhunen-Loeve expansion, the relationship between
the Karhunen-Loeve mode shapes and the natural mode shapes and how a re-
duced order model can be synthesized using the Karhunen-Loeve expansion and
Galerkins method.

• Chapter IV dibcusses the determination of the Karhunen-Loeve modes.

" Chapter V describes the control solution and presents the control simulation re-
sults.

" Chapter VI discusses the conclusions based on the simulation results and a re-
conmended design procedure.



11. THE MATHEMATICAL MODEL

A. INTRODUCTION

Large space structures are flexible, lightly damped structures that can vibrate for a
considerable amount of time when disturbed by an external force. To effectively control

such a system, a mathematical model describing the evolution of that system in time is

required.

B. THE MODAL MODEL
The space station is modeled as a combination of small plates of unit mass con-

nected to form the complete structure. This model can be visualized as a system of

masses connected by springs and dashpots (the springs representing the stiffness factor

and the dashpots representing the damping factor). The displacement of the masses can

be described by a second order matrix differential equation of motion:

d
[.lf(t) + -a-- Kx(t) + Kx(t) = F(t) (1)

where

0 x is the generalized coordinate vector

* M i the diaconal system mass matrix

(* K is the structural damping term

* d i the damping constant

* u. is the Frequency of oscillation of the system

* K is the svnmetric system stiffness matrix

* 1(t) is the system forcing function

This equation represents a system of simultaneous, second order differential equations

that are coupled by the K matrix.[Refl 1: p. 3]

This equation can be uncoupled and the system represented by a set of independent

second order differential equations. This is done through the process of modal analysis

which is outlined , Refs. 2. 3]. The resulting modal model consists of a set of inde-

pendent second order differential equations:

[j+ Q +Q±2 2 l = XT F] (2)

3



where

* ijis the coordinate vector or modal amplitude vector

* 2- = diagw 1u: .... , w,,]
* X'= [x, x. x,] the transpose of the modal matrix or mode shape vector

* F is the torquing force applied at a point

Next a discrete-time equation describing the motion of the space station in terms of its

natural modes of vibration is developed. The discrete-time state equation for the ith

equation of motion is:

Z,(k T+ 1) = (i(T Z,.(k 7) + 1-,(7) X' t-(k 7) + If (k 71)])

where
* Z, is a vector of the ith modal amplitude and

the ith modal velocity

S1). is the ith state transition matrix

F F, is the ith input vector

X XT is the transpose of the ith mode shape vector

* F is the control torque force vector applied at a point

* T is the sampling time

k is the time index

N N is the disturbance input

This equation is used for computer simulation of the space station and control

solution.[Ref. 1: p. 4]



1M1. APPLICATION OF THE KARHUNEN-LOEVE EXPANSION TO THE
REDUCED ORDER CONTROL OF LARGE SPACE STRUCTURES

A. INTRODUCTION
Large flexible structures, such as a space station, as a class of distributed parameter

systems (DPS) require a finite dimensional model for control design. This model may
be achieved by approximatin2 the state of the LSS using the Karhunen-Loeve (KL) ex-
pansion. The expansion is truncated to provide the finite dimensional approximation
of the state for control design. The KL model that results describes the evolution of the

approximated state of the structure.

The natural mode shapes are normally used for modeling and control of flexible
structures. The relationship between the natural mode shapes and the KL mode shapes

is described in this chapter as well as the use of Galerkin's method. Galerkin's method
is used to generate a reduced order model (ROM), using both the natural mode shapes

and the KL expansion.

B. THE KARHUNEN-LOEVE EXPANSION

The purpose of the KL expansion is stated by Stark and Woods [Ref. 4: p. 322].
"The idea [of the KL expansion] is to decompose a general second-order random proc-
ess into an orthonormal expansion whose coefficients are uncorrelated random
variables." The state of a large space structure (LSS), y(x), can be modeled as random

process since it depends on random excitations, i.e., noise from onboard machinery and

actuators. The second order moments of the LSS are proportional to the physical en-
ergy and therefore exist. The LSS can therefore be approximated using the KL expan-
sion [Ref. 5: p. 12]. This is done by projecting the random process onto an orthonormal

basis and truncating to N terms. The value chosen for N is a matter of "engineering

judgment". [Ref. 5: p. 13]

The selection of the orthonormal basis is made by solving the KL eigenequation:

< Ryy(x,z), O,(z) > = ).oi1(x) (4)

where

* 4,(x) is referred to as an eigenfunction (or the KL mode shapes)

* ., is the cieenvalue and is a measure of the excitation of the ith basis function

5



* R,)(x.z) is the correlation function of y(x): R,(x,z) = Efv(x)vT(x)]

* <.. * > is an inner product: < a(z), b(z) > = fn aT(z) M(z) b(z) dz

* M(z) is the mass density of the structure

Q is the spatial extent of the structure

The state of the LSS is approximated by:

N

Ya = (x) (5)

where

Y y. is an approximation to the state of the space structure

• , is a set of coordinates found by , = < 0,(x),y(x) >

0 ¢,(x) is the ith basis function or KL mode shapes

The expansion is truncated by keeping the eigenfunctions (KL mode shapes) associated
with the N largest eigenvalues. [Ref: 5: p. 13]

The KL expansion yields the best approximation to the random process, i.e., mini-

mizes the expected value of the norm of the error, of any orthogonal expansion. The

approxinration error is defined as:

00

e(x) = v(x) - va(x) = A(x) (6)

For a proof of the optimality of the KL expansion see [Ref. 6: p. 11] or [Ref. 5: p. 15].

C. RELATIONSHIP BETWEEN THE KARHUNEN-LOEVE MODE SHAPES AND
THE NATURAL MODE SHAPES

The relationship between the KL mode shapes or KL basis functions and the natural
mode shapes is taken from Burl [Ref. 5: p. 13]. The KL mode shapes of a structure are
related to the natural mode shapes of that structure by a linear transformation repres-
enting a change of basis which can be written:

Z cj ) + Ci(J n (X)c (7)
j=6



where

T) 0 (x) 0 'I2(-W) 0 /0(x) ](8)

ClT [c CiI C2 C ... ](9

and {n,(x)} is the set of natural mode shapes. The state of a structure consists of a

generalized position and velocity which can be expanded in terms of the natural mode

shapes:

y~x~) c j(t)' & 0 ' lTxr( (10)
j= L J 

4

where

,.T(t)= [ -l(t )  &1t(1)  V-2(t) &2(t) 0.3(t) ... ]( 1

are the coordinates and velocities of the natural mode shapes. The vectors, c,. can be

found by solving the equation:

E[ WaW)] Q e=i c! (12)

where

Q = diag[o- 0],[ 0]..[C06 0] ]  (13)

Equations 10 and 11 give the KL mode shapes in terms of the natural mode shapes.

Equation 12 is an infinite dimensional eigenvalue problem that can be solved practically

by truncating it to the most significant terms.

D. REDUCED ORDER MODELING USING THE KARHUNEN-LOEVE MODES

Galerkin's method is used to produce reduced order state equations. This can be

done with either the KL modes or the natural modes.



The discrete-time state equation of a distributed parameter system is:

y(x,k) = Fy(x,k - 1) + GJ(k) (14)

where

* y(x,k) is the state

* flk) is the input

* k is the time index

* F is an operator on the state space

* G is an operator from 9m to the state space

* For each k, y(x,k) e the state space, f(k) e 2-

A finite dimensional approximation to this equation can be obtained using Galerkin's

method

P, y(x, k) = (P, F PJ ))(x, k - I) + P, G u(k) (15)

where P, can be written in terms of a basis [ii I i= 1,2,..., n]

n
Pn( " I=Il(x) < 1h(X), " >  (16)

The KL mode shapes (basis functions) can be used in the above equations and the KL

model results. The natural mode shapes can be used in the above equations, which is

equivalent to truncating the modal equations, producing the modal model.[Ref. 5 : p.

131

E. SUMMARY

The KL expansion can be used to approximate the state of a LSS. This is done by

projection of the state, which is modeled as a random process, onto an orthonormal

basis function. The basis function can be found by solving the KL eigenequation. These

KL basis functions will yield the best approximation to the state of the LSS. Then using

Galerkin's method a reduced order model of the LSS is produced. This reduced order

model is used to generate a control which is applied to the entire system.



IV. DETERMINATION OF THE KARHUNEN-LOEVE BASIS

FUNCTIONS

A. INTRODUCTION

The KL basis functions (or mode shapes) can be determined by solving the

eigenequation 12. This is a tedious and laborious processes. It can be shown that for

lightly damped structures the KL mode shapes can be determined from the open loop

response by ordering the natural mode shapes in order of decreasing modal energies.

The KL mode shapes were calculated using the KL mode program in Appendix B.

lhese calculations were compared to the mode shapes selected by observing the open

loop response to verify that this is a valid method of determining the KL mode shapes.

The value of the structure's damping factor used in the program was increased until

the KL mode shapes no longer were the same as those determined from the open loop

response. This was done to determine how large the structure's damping factor could

be and still have the KL mode shapes converge to the natural mode shapes.

B. NUMERICAL DETERMINATION OF THE KARHUNEN-LOEVE MODE

SHAPES

The KL mode shapes are found by deternining the eigenvalues and eigenvectors

(equation 12) of the covariance matrix E[a,(t) a(t)]. This is an infinite dimensional

matrix which is truncated to a finite dimensional square matrix. There are three terms

in E[.(i) yT(t)], where a(i) is defined by equation 11. The first of these terms is com-

puted, for a white noise input

E[i(t) V.1(t)] = fhi(r) h1j()r (17)

where h,(t) is the impulse response for a,(t) [Ref. 6: p. 66]. The impulse response is given
by:

hi(t) b2i e- yoit sin(wo!\ 1 - 2 t) (18)
1 - 2

where

9



* b2, is the modal slope in the x direction

, is the damping coefficient; y = d is a constant
2

* w., is the natural frequency

Performing the integration in equation 17 produces the result:

E[,i(t) cz(t)] = K, Kj 2 a b2 ] a[2 (19)

2 a + 2 2a 2+ C2]

where

aK, 
b, ,

C C (0,1 + COOl-
The other terms in E[-(t) ar(t)j can be found in a similar way. They are:-Y b + c ]

EaI4 t(t)] = Ki KjL 2[a 2 + b2] + 2[a 2 + c2 -]

Ki Kj .mL 2[a2 +b 2] 2[a 2 + c 2 ]

and

LjLj.a - LiMjb - LjMjb + MjMja
E[&(t) &j(t)= K K 2

[a + b (21)

ILjLa - L1Mjc- MMja
+ 2Ea 2 + C2]

where
*L,,: = c,.J\ l ->2

Equations 19. 20, and 21 specify the eigenvalue problem equation 12.

The eigensolution specifies the transformation from the natural mode shapes to the

KL mode shapes. This finite dimensional eigenvalue problem is solved and the KL mode

shapes are approximated as a linear combination of the first fifty (flexible) natural mode

10



shapes. The program in Appendix B computes the KL mode shapes by solving the

eigenvalue problem equation 12.

C. EMPIRICAL DETERNIINATION OF THE KARHUNEN-LOEVE MODE

SHAPES

The numerical computation of the KL mode shapes is difficult. Solving the

eigenvalue problem requires the determination of the impulse response and solving for

all the terms in the covariance matrix E[o.,(t) ai(t)]. It turns out that, in the limit as the

damping factor of the structure approaches zero, the KL mode shapes converge to the

natural mode shapes [Ref, 7J.

If the modal energies for the open loop response are computed and the mode shapes

ordered by decreasing modal energy, these mode shapes should be the same as those

computed numerically. The output of the system. y, is defined:

(7 0 0 0

0. . (22)
0vs 0 0 .. 0~s 0 0x 6

0 0 0

where , e 2 and

E[ith Modal Energy] = E[ 11 ,! 112]. (23)

The energy, given in equation 23 can be written [Ref. S ]:

E 11j, 112] = J0 Ihyi() 28t (2-4)

where h,, is the response of y, due to an impulse applied at the disturbance input (node

69 or 55). Equation 24 is evaluated using computer simulation. The mode shapes found

are compared to those determined numerically for noise input at node 69 or node 55, see

Table 1 on page 12.

11



Table 1. DETERMINATION OF THE FIRST FIFTY FLEXIBLE
KARHUNEN-LOEVE MODE SHAPES

Karhunen-Loeve Karhunen-Loe~e
mode shapes deter- mode shapes numer-

mined from the open ical v calculated.
loop response. icallycalculated.

Noise input Location:
Node 55 Node 69 Node 55 Node 69

40 54 40 54
43 51 43 51
7_ 31 7 31

17 52 17 52
28 36 28 36
15 ; 15 7
44 30 44 30
35 28 35 28
39 48 39 48
33 26 33 26
41 35 41 35
31 50 31 50
42 15 42 15
45 55 45 55
53 41 53 41
48 56 48 56
11 44 11 44
36 53 36 53
26 33 26 33
21 34 21 34
8 25 8 25
16 37 16 37
38 38 38 38
29 46 29 46
52 27 50 27
30 43 30 43
23 40 23 40
19 23 19 23
32 21 32 21
25 16 25 16
51 8 51 1 8

"45 27 1 45

46 42 49 42
34 11 37 11
24 47 20 47
1 ( 49 10 49
52 13 52 13
55 20 55 20

929 46 29

46 10 49 10
49 24 9 24
34 17 34 1 17
56 39 -;6 39
24 22 24 22)
54 32 54 32
13 9 13 9
is 13 18 13
4 7 14 1 47 14
14 19 14 19

12 12 12 12

12



Table 1 shows that the mode shapes are the same. Therefore, the KL mode shapes can

be determined from the open loop response when the structural damping factor is suffi-

cientlh small. In the case of the space station simulated in this thesis a value of 0.001

was used. The next question is. how big can the damping factor of the structure be be-

fore the KL mode shapes fail to converge to the natural mode shapes?

1. Required Magnitude of the Damping Factor for Convergence

When the structural damping factor is small enough, the eigenvectors solved for

in equation 12 approximate the natural basis

T 00 ... (25)

or

eT =[O100 ...] (26)

etc.; one element is unity and the other elements are zero. WVhen these vectors are sub-

stituted into equation 7 it is easy to see that the KL mode shapes are the natural mode

shapes. If the damping factor is increased, at some value the eigenvectors have more

than one non-zero element and the KL mode shapes become a linear combination of

natural mode shapes.

The damping factor was increased successively by a factor of two from a starting

value of 0.0005. The norm of the error (or error norm) is used as a means of measuring

how closelh the eigenvectors obtained from the KL mode program approach the ideal

of equation 25. The error norm is defined as follows:

SO

SE 1,k= ninimumll Ck ej II = 1 X) + ( 27)

i=2

where

ck= [xi x 2 x 3 ... xj ... x50] (28)

and for simplicity x, is assumed to be positive and the largest component of c,. Equation

27 can be simplified to
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50

II E Ilk = - 2xj+Lx, (29)
1=1

Since the eigenvectors are normalized,

50Zxo (30)

and substituting equation 30 into equation 29 yields

1I - Ilk = % 2(1 - xj) (31)

a. Results

The norm of the error. r, and the natural mode shape sequence obtained
from the KL mode program were used to determine how large the damping factor could

be and still have the KL mode shapes and natural mode shapes converge. The error

norm is presented graphically for each KL mode; all cases are for disturbance torques

due to actuator noise. The cases presented are:

-i iure 2 on page 16: for a damping factor of 0.0005 all but two KL modes have
an error norm below 0.2. The natural mode sequence is as in Table I on page 12.

" Figure 3 on page 17; for a damping factor of 0.001 nearly 74 percent of the KL
modes have an error norm of 0.2 or below, the natural mode sequence is presented
in Table I on page 12. The natural mode shapes are a good approximation of the
KL mode shapes.

* Figure 4 on page 18; for a damping factor of 0.002 only 46 percent of the KL
modes have an error norm at or below 0.2. and the natural mode sequence no
longer conforms to that in Table 1 on page 12, i.e., the KL modes and natural
modes are not converging.

" Figure 5 on page 19; for a damping factor of 0.005 only 28 percent of the KL
modes have an error norm of 0.2 or less and the KL modes and the natural modes
are more divergent.

b. Conclusion

If the damping factor is greater than 0.001 the natural mode shapes are not

a good approximation of the KL mode shapes. The convergence criteria is that the

norm of the error, for 50 percent of the KL modes or greater, is more than 0.2. The
value for the damping factor used in the space station simulations as noted in previous

14



chapters was 0.001. The a.sumption that the KL mode shapes and natural mode shapes

converee is valid for this damping factor and determining the KL modes firom the modal

energies is a good approximation.
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ERROR NORM VS DAMPING FACTOR
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Figure 2. Normi of the error values for the KL modes, excitation at node 69

damping factor = 0.0005
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Figure 3. Norm of the error values for the KL modes, excitation at node 69

damping factor = 0.001
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ERROR NORM VS DAMPING FACTOR
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Figure 4. Norm of the error value.- for thle KL modes, excitation at node 69

damping factor =0.002
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ERROR NORM VS DAMPING FACTOR
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Figure 5. Norm of the error values for the KL modes, excitation at node 69

damping factor = 0.005
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V. CONTROL SOLUTION

A. INTRODUCTION
The response of the space station to disturbance and control inputs is simulated

using the modal model discussed in Chapter 11. The Fortran program that simulates this

model was written by Preston [Ref. 1: p. 471, and is used in this thesis with minor mod-

ification, (see Appendix A). The objective of the simulation is to determine the system
response to disturbances applied at modes 69 and 55 (see Figure 6) on the structure,

using increasing sizes of KL models (i.e., 5, 10. 20 modes). The response of the system

is depicted graphically by displaying the energy in each mode in english units of inch-

pounds (in-lbs.).

55 C9MGs

Alpha

Joint

Y x

~z

Figure 6. Disturbance Locations
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B. FULL ORDER SPACE STATION MODEL

The plant being controlled in this thesis, as stated in Chapter I, is a preliminary

version of the NASA dual keel space station. NASTRAN was used to generate the first

fif-', flexible modes (starting xith mode seven). The modal model that forms the FJl]

order model is composed of these flexible modes:

0 i 0 0

77 7

0 0

00

- (32)
o 0

0 : [
0 0

05b(rC) 0 51 (P1)

where

-modal amplitude] -2 (13)x L modal velocity (3

and

" (o, is the natural frequency of the ith mode

" d = 0.001 is the damping coefficient

" u e -91 is the control input torques from three orthogonally oriented control mo-
ment gyros

* w e .3 is a random, white noise disturbance input (three orthogonal disturbance
torques)

0 ,(p) e _2 is the modal slopes at p

* p, is the location of the control moment gyros (node 69 on Figure 6 on page 20)

* p, is the location of the disturbance input (either the control moment gyro location.
node 69. or the alpha joint, node 55. as seen in Figure 6 on page 20).
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This model is used as the full order model in the simulation of the space station. How-

ever. it is itself a reduced order model since the "infinite" number of vibrational modes

of the structure are truncated to fifty.

It is assumed that perfict modal amplitude and modal velocity information is avail-

able. This assumption of perfect sensor information is not realistic, but isolates the ef-

fect of modal truncation on control algorithm synthesis.

C. THE REDUCED ORDER MODEL

The reduced order model of the space station is obtained by truncating modes. The

criteria for truncating modes is either the modal frequency or the Karhunen-Loeve or-

dering (the KL ordering found in the previous chapter to be equivalent to an ordering

based on the energy measured during open loop excitation).

D. PERFORMANCE FUNCTION AND OPTIMAL CONTROL

The full-order model and a reduced order model have been established. Next, a

mathematical expression of system performance is required. The performance function,

J. stated here is developed in detail in [Ref. 1: p. 10 ]. J consists of the total energy in

the modeled modes plus a control energy term:

2

(o0 0 0 0

0 0 0 X1

0o imax 0am -

0 0 0 1

where

" imax is the number of modes in the reduced order model

• r = 10-12 is a weighting coefficient on the control energy term selected to yield tme
constants on controlled modes of approximately 30 seconds.

Vibration damping is achieved by application of steady state, linear quadratic regulator

theory [Ref. 9] to the KL (reduced order) model. The control torque vector, u(k), is the

product of an optimal gain matrix. L, and the time varying state matrix, Z (equation 3).

The L matrix is found by solution of the Ricatti equations to minimize the performance

function. J. [Ref. 1: p. 12].
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E. SIMULATION RESULTS

The space station was simulated and the modal energies calculated for disturbance

inputs applied at nodes 69 and 55 as shown in Figure 6 on page 20. The contrcl system

consists of KL (reduced order) models of five. ten or twenty modes. The data is pre-

sented graphically as energy in each of the modes. The open loop response is included

for comparison except where the difference in scale precludes it. The closed loop re-

sponse for a reduced order model generated by modal truncation is included for com-

parison with the KL model. The cases presented are:

" Open loop (no control) response which identifies the reduced order model to be
used. See Figure 7 and Figure S.

* Closed loop response for a reduced order model generated by modal truncation
with the modes ordered by natural frequency. See Figure 9 to Figure 14.

* Closed loop response for a Karhunen-Loeve (reduced order) model. The KL modes
were determined from the open loop responses. These results are shown in
Figure 15 through Figure 19.

• Closed loop response, with a KL model based on the open loop response, for the
system excited by the control actuators. These results are shown in Figure 20
through Figure 22.

These results are discussed in detail in Chapter VI.
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Figure 7. Open Loop Response, excitation at node 55.
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Figure 8. Open Loop Response,excitation at node 69
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NODE 55 ENERGY PER MODE
100 __ _ _ __ _ _ _ __ _ _ _

0.

4 LEGEND
0 UNCONTROLLED

5 CONTROLLED MODE, S

0 "

L-

0

S I-- I I *I i IFJ.I Ii i I 1 I

912 1518 22427303333942 45 48 5154 57 60

MODE

Figure 9. Five Controlled modes selected by frequency, excitation at node 55.
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Figure 10. Ten controlled modes selected by frequency, excitation at node 55.
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Figure 11. Twienty controlled modes selected by frequency,excitation at node 55.
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Figure 12. Five controlled modes selected by frequency, excitation at node 69.
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Figure 13. Ten controlled modes selected by froquency, excitation at node 69.
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Figure 14. Twenty controlled modes selected by frequency, excitation at node 69.
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Figure 15. Five controlled modes selected by modal energy, excitation at node 55.

32



NODE 55 ENERGY PER MODE
0

0o

0

LEGEND
CUNCONTROLLED
!- 10 CONTROLLED MODES

0

MOD

Foslt

-33

0

0.

0: - .

0 -! : :

0::
0:.

0

0 -:i i"
.o

m ' I ' 1 III I I I I1 I I I I

6 9 1215182124273033363942454851545760

MODE

Figure 16. Tezi controlled modes selected by ,nodal energy, excitation at node 55.
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Figure 17. Tiventy controlled modes selected by modal energy, excitation at node
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Figure 18. Five and ten controlled modes selected by modal energy, excitation at

node 69.
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Figure 19. Ten and twenty controlled modes selected by modal energy, excitation

at node 69.
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Figure 20. Five controlled modes selected by modal energy due to excitation at node

69, actual excitation at node 55.
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Figure 21. Ten controlled modes selected by modal energy due to excitation at node

69, actual excitation at node 5-5.
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Figure 22. Twienty controlled modes selected by modal energy due to excitation at

node 69, actual excitation at node 55.
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VI. CONCLUSIONS AND RECOMMENDATIONS

A. CONCLUSIONS

Results supported theoretical claim that the KL mode shapes converge to the na-
tural mode shapes. For the space station example, a damping factor of 0.001 was re-

quired to make the approximation based on convergence good.

Preston discovered, see [Ref. 1: p. 46], that truncating the modes based on natural
frequency yielded poor results. Modes with large coupling to the control system are not

modeled when natural frequency is the method of truncation. Instead modes with very

little coupling to the control system are modeled and in attempting to control these

modes very large control torques are generated causing large excitations in the strongly

coupled but unmodeled modes as seen in Figures 9 through 14.

The excitation of each mode depends on two factors: the natural frequency which

determines the damping and the amplitude of the mode shape which deterni", es how

much excitation is received by each mode. The amplitude of the mode shape is the

dominate factor which is evident from the open loop responses see Figures 7 and 8.

Truncating based on the open loop response, i.e., the Karhunen-Loeve model also
yields poor results except when it is developed from the open loop response for the case

of the disturbance torques being due to actuator noise, see Figure 8 on page 25. When

truncating modes based on the open loop response, the coupling from the noise input
is the dominate factor in selecting the modes to include in the model. In this case modes

with large open loop excitation are controlled, but the control coupling still dominates

yielding large excitation in the unmodeled modes (see Figures 15 through 17). When the

disturbance torques are due to actuator noise, the modes with the largest open loop

excitation are also the modes with the largest control coupling and the control system

works well (see Figures 18 and 19).

The KL model based on the open loop response for disturbance torques due to
actuator noise works well when applied to the space station with a disturbance torque

applied at another location. As seen in Figures 20 through 22, the control system drives

the modeled modes close to zero without exciting other modes to a significant degree.

The problem with this configuration is that modes with large open loop excitation are

not necessarily modeled and may be left excited by the control system.
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B. DESIGN PROCEDURE

This design procedure is based on the above conclusions and is recommended for

controlling vibration in LSS. First, the reduced order control model should be based on

the KL mode shapes determined from the open loop response for disturbance torques

due to actuator noise. Next, check the open loop response for disturbance torques at

locations on the structure where noise inputs are most likely, e.g., the alpha joint.

Modes strongly coupled to the disturbance input must be included in the KL model.

This will determine the size of the KL (reduced order) model. If, after all this is done,

the results are still unacceptable, then adding additional control elements should be

considered. The placement of the additional control element(s) is determined by the

node(s) with the largest modal amplitude(s) for the modes that remain excited by the

initial control system. The process is repeated until an acceptable control is achieved.

41



APPENDIX A. SPACE STRUCTURE SIMULATION PROGRAM

This program simulates the dual keel space station described in Chapter I by im-

plementing the model described in Chapter IV. The control described in Chapter IV is

also simulated. For a detailed explanation of this program and its development see [Ref.

11 .

C
C
C Space Structure Simulation Program
C

C By William J. Preston
C
C
C
C *

C VARIABLE DECLARATIONS
C *

C
EXTERNAL EXOMS ,RICDSD
CHARACTER*6 NAM
CHARACTERe1 AGAIN,CORECT,RAGAIN
INTEGER NODE ,MODE ,KQ ,EMODE ,SMODE
INTEGER CT,CF,KA,LOOP,PRNT,MODAL,V,COUNT,PRNTG
INTEGER NF,NG,NH-,NZ,I,K,M,CTADJ
INTEGER IPVS( 100) ,ITYPE( 200)

C *,-*-
C REAL TOTCST,RMODEN(7: 100)
C REAL*8 COSW1T,SINWlT,COST,CNTCST,ENERGY,RM

REAL RTOTAL,RMODEN(7: 100)
REAL*8 PHII(2,2,l0O),GAMMA(2,lOO),EGT,GMA,WN,Wl,X1T,X2T
REAL'*8 PHI( 188,188) ,B( 188,3),BN(188,3) ,R(3,3) ,RR(3,3)
REAL*8 RINV(3,3),RRINV(3,3),Xl(7:100),X2(7:1O0),MiODEN(7:lO0)
REAL*8 COSW1T,SINWIT,COST,CNTCST,ENERGY,TOTCST,RM
REAL*8 TCX,TCY,TCZ,DAMP,SAMPT,PI,SUM1,SUI2,SUM3,SUMC
REAL*8 TNX,TNY,TNZ,IMPX,IMPY,IMPZ,IMPLSX,IMPLSY,IMPLSZ
REAL LAMA( 100) ,UGVEX(100,3),RNODE,RMODE,MIN,TIME,SAMPTM
REAL UG69(1OO,3),UG23(100,3),UG55(100,3)
REAL*8 H(lOO,l00),G(lOO,l0O),L(3,l00),BT(3,100)
REAL*8 Z(200,200),W(200,200),ER(200),F(lO0,100),EI(200)
REAL*8 SCALE(200),TEMP(100,3),TEMP1(3,l0O),WORK(100)

C
C
C

C VARIABLE DEFINITIONS
C
C
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C LAMA = VECTOR OF THE SQUARE OF THE NATURAL FREQUENCIES
C UGVEX = MODE POSITONS AND SLOPES OF THE NODAL POINTS
C PHI = STATE TRANSITION MATRICIES FOR EACH MODE
C GAMMA = INPUT TRANSITION MATRIX
C A = DIAGONAL MATRIX CONSISTING OF PHI
C B = INPUT MATRIX OF GAMMA AND CONTROL NODE SLOPES
C BN = NOISE INPUT MATRIX OF GAMMA AND NOISE NODE SLOPES
C DAMP = DAMPING FACTOR
C SAMPT = SAMPLING TIME
C IMPLSE = IMPULSE INPUT FUNCTION
C TCX, TCY, TCZ = CONTROL TORQUE VALUES
C IMPX, IMPY, IMPZ = AXIS IMPULSE NOISE VALUES
C ENERGY = SYSTEM ENERGY COST VALUE FOR A GIVEN POINT IN TIME
C CNTCST = SYSTEM CONTROL COST VALUE FOR A GIVEN POINT IN TIME
C COST = TOTAL SYSTEM COST VALUE FOR A GIVEN POINT IN TIME
C TOTCST = SYSTEM COST SUMMED OVER ALL TIME
C MIN = NUMBER OF MINUTES SYSTEM WILL BE OBSERVED
C
C SAMPLE OF SPACEN EXEC FILE
C
C THIS FILE MUST BEGIN IN COLUMN 1 AND RUN WITH THE FOLLOWING
C SEQUENCE FOR THE INITIAL RUN OF THE PROGRAM:
C
C FORTVS2 SPACEN (COMPILES PROGRAM)
C SPACEN (LOADS AND RUNS PROGRAM)
C
C SUBSEQUENT PROGRAM RUNS CAN ELIMINATE "FORTVS2 SPACEN" IF NO
C CHANGES HAVE BEEN MADE TO THE PROGRAM.
C

* C CP DEF STOR 2M
C FI 4 DISK KLAMA OUTPUT B (PERM
C FI 30 DISK Xl OUTPUT A (RECFM F BLOCK 80 PERM
C FI 31 DISK MODENG SPACEN A (RECFM F BLOCK 80 PERM
C FI 32 DISK TORQUE OUTPUT A (RECFM F BLOCK 80 PERM
C FI 33 DISK ENERGY OUTPUT A (RECFM F BLOCK 80 PERM
C FI 34 DISK MDECST OUTPUT A (RECFM F BLOCK 80 PERM
C FI 35 DISK COUNT INPUT A (RECFM F BLOCK 80 PERM
C FI 40 DISK UTILITY DATA A (RECFM F BLOCK 80 PER
C FI 41 DISK RUN DATA A (RECFM F BLOCK 80 PERM
C FI 42 DISK KUG69 OUTPUT A (RECFM F BLOCK 80 PERM
C Fl 43 DISK KUG23 OUTPUT A (RECFM F BLOCK 80 PERM
C Fl 44 DISK KUG55 OUTPUT A (RECFM F BLOCK 80 PERM
C LOAD SPACEN
C START * NOXUFLOW
C
C
C
C

PI = 4.ODO * ATAN(1.ODO)
SAMPT = 0.0
DAMP = 0.0
MODAL = 0
IMPX = O. ODO
IMPY = 0. ODO
IMPZ = O. ODO
NF = 100
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NG = 100
NH = 100
NZ = 200

C
C
c * NUMBER OF MINUTES THE SYSTEM WILL BE OBSERVED *****
C

MIN = 120.0
C
C
C SET LENGTH OF MODAL MODEL
C *************'*************** *******************************

C
MODAL = 56

C

C READ LAMA MATRIX
C
C

READ(4,1001) NAM
READ(4,1002)(LAMA(I),I=1,100)

C
C
C SCREEN INTERACTION
C
C
C
C STARTING MODE NUMBER
C

SMODE = 7
C
C ************* NUMBER OF MODES TO SCAN ************
C

MODE =5
EMODE = SMODE + MODE - 1

C
C NOISE INPUT POSITION
C

NODE = 55
AXIS = 1

C
C R MATRIX VALUE
C

RM = 1E-12
C
C ********°.01 FOR FULL SAMPLING TIME 0.05 FOR REDUCED ******
C

SAMPT = 0.01
C
C DAMPING FACTOR

DAMP = 0.001DOO
C

DO 75 I = 1,100
READ(42,1040) (UG69(I,K),K=1,3)
READ(43,1040) (UG23(I,K),K=1,3)
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READ(44,1040) (UG55(I,K),K=1,3)
75 CONTINUE
C BEGIN RUN

DO 505 M = 1,3
C

WRITE (41,700) SMODE
WRITE (41,701) MODE
WRITE (41,706) EMODE
WRITE (41,702) NODE
WRITE (41,703) RM
WRITE (41,704) SAMPT
WRITE (41,705) DAMP
WRITE (41,707) MIN
WRITE (41,708) MODAL

C
C NOISE AXIS INPUT AND LOCATION
C

IF(AXIS. EQ.1)THEN
IMPX = 1.ODO/SAMPT

ELSEIF(AXIS. EQ. 2)THEN
IMPY = 1.0DO/SAMPT

ELSEIF(AXIS. EQ. 3)THEN
IMPZ = 1. ODO/SAMPT

ELSEIF(AXIS. EQ. 4)THEN
IMPX = 1. ODO/SAMPT
IMPY = 1.OD0/SAMPT
IMPZ = 1.ODO/SAMPT

ENDIF
C

COUNT = 0
C
C INITIALIZE MATRICIES
C

DO 40 I = 1,188
DO 45 J = 1,188

PHI(I,J) = 0.0
45 CONTINUE
40 CONTINUE
C

DO 60 I = 1,188
DO 65 J = 1,3

B(I,J) = 0.0
BN(I,J) = 0.0

65 CONTINUE
60 CONTINUE
C

DO 70 K = 7,100
X1(K) = 0.0
X2(K) = 0.0
MODEN(K) = 0.0
RMODEN(K) = 0.0

70 CONTINUE
C
C
C BEGIN MAIN PROGRAM
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C ESTABLISH A, B AND B"NOISE" MATRICIES
C
C

DO 600 I = SMODE,MODAL
WN = DBLE(SQRT(LAMA(I)))
GMA = DAMP'*WN/2.O
EGT = DEXP(-GMA*SAMPT)
Wi = DSQRT((WN**2)-(GMA**2))
COSW1T = DCOS(Wl*SAMPT)
SINWlT = DSIN(Wl*SAMPT)

C
IF(WN. EQ. O)THEN

PHII(1,1,I) = EGT*COSW1T
PHII(1,2,I) = SAIMPT
PHII(2,1,I) = 0
PHII(2,2,I) = EGT*COSWIT

C
GAMMA(1,I) = 0
GAMMA(2,I) = 0

ELSE
C

PHII(1,1,I) = EGT*(COSW1T + (GMA*(Wl**(-l)))*SINW1T)
PHII(1,2,I) = (W1**(-))*EGDT*SIN W1T
PHII(2,1,I) = -(N*)(l*-)*GII'l
PHII(2,2,I) = EGT-*(COSWlT - (GMA*(W1**(-1)))*SINWlT)

C
GAMMA( 1,1) = (WN**'( -2))*( 1. 0D0-EGT*(COSWlT+(GMA/Wl)*SINWlT))
GAMMA(2,I) = (Wl*( -))*EGT*-SINW1T

C
ENDIF

C
600 CONTINUE
C

V= 1
C

DO 610 K = SMODE,MODAL
C

PHI(V,V) = PHII(1,1,K)
PHI(V,V+1) = PHII(1,2,K)
PHI(V+1,V) = PHII(2,1,K)
PHI(V+1,V+l) = PHII(2,2,K)

C
B(V,1) = GAMMA(1,K)*DBLE(UG69(K,1))
B(V,2) = GATIA(1,K)*DBLE(UG69(K,2))
B(V,3) = GAMMA(1,K)*DBLE(UG69(K,3))
B(V+1,1) = GAMMA(2,K)*DBLE(UG69(K,l))
B(V+1,2) =GAMMA(2,K)*DBLE(UG69(K,2))
B(V+1,3) = GAMMA(2,K)*DBLE(UG69(K,3))

C
V = V+2

C
610 CONTINUE
C

DO 605 I = 1,100
UGVEX(I, 1) = 0. 0
UGVEX(I,2) = 0.0
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UGVEX(I,3) = 0.0
IF( NODE. EQ. 23) THEN

UGVEX(I,1) = UG23(I,1)
UGVEX(I,2) = UG23(I,2)
UGVEX(I,3) = UG23(I,3)

ELSEIF( NODE. EQ. 55) THEN
UGVEX(I,1) = UG55(I,1)
UGVEX(I,2) = UG55(I,2)
UGVEX(I,3) = UG55(I,3)

ELSEIF(NODE. EQ. 69) THEN
UGVEX(I,1) = UG69(I,1)
UGVEX(I,2) = UG69(I,2)
UGVEX(I,3) = UG69(I,3)

END IF
605 CONTINUE
C

V= 1
C

DO 620 K = SMODE,MODAL
C

BN(V,l) = GAMMA(1,K)*DBLE(UGVEX(K,1))
BN(V,2) = GAMMA(l,K)*DBLE(UGVEX(K,2))
BN(V,3) = GAMMA(1,K)*DBLE(UGVEX(K,3))
BN(V+l,1) = GAMMA(2,K)*DBLE(UGVEX(K,1))
BN(V+1,2) = GAM-MA(2,K)*DBLE(UGVEX(K,2))
BN(V+1,3) = GAMMA(2,K)*DBLE(UGVEX(K,3))

C
V = V+2

C
620 CONTINUE
C
550 CONTINUE
C
C...........ESTABLISH H, F AND R MATRICIES *.***

C
DO 50 I = 1,NH

DO 55 J = 1,NH
H(I,J) = 0.0
F(I,J) = 0.0
G(I,J) = 0.0
IF( I. LE. 3)THEN
L(I,J) = 0.0

END IF
55 CONTINUE
50 CONTINUE
C

DO 61 I = 1,3
DO 66 J = 1,3

R(I,J) = 0.0
RINV(I,J) = 0.0

66 CONTINUE
61 CONTINUE

KQ = 1
DO 80 K = SMODE,EMODE

H(KQ,KQ) = DBLE(LAMA(K))
H(KQ+1,KQ+l) = 1.ODO

47



KQ = KQ+2
80 CONTINUE
C

K = 0
DO 85 K = 1,3

R(K,K) = RM
RINV(K,K) = 1.ODO/RM,

85 CONTINUE
C

DO 88 I = 1,2*MODE
DO 89 J = 1,2*MODE

F(I,J) = PHI(I,J)
89 CONTINUJE
88 CONTINUE
C
C COMPUTE G MATRIX AS NEEDED BY RICDSD SUBR
C

CALL MATRAN(B,188,2*MODE,3,BT,3)
C

CALL MATMUL(B, 188,2*MODE,3,RINV,3,3,TEMP,NH)
C

CALL MATMUL(TEMP,NH,2*'MODE,3,BT,3,2*MODE,G,NG)
C
C
C BEGIN RICCATI GAIN CALCULATIONS
C
C

CALL RICDSD(NF,NG,NI{,NZ,2*MODE,4*~MODE,F,G,H,Z,W,ER,EI,WORK,
+ SCALE,ITYPE,IPVS)

C
WRITE(41,*)'
WRITE (41,130)

130 FORMAT (/' THE CLOSED LOOP EIGENVALUES ARE: '/)
DO 140 I = 1,2*MODE

WRITE (41,*) ER(I),EI(I)
140 CONTINUE

WRITE (41,150) WORK(1)
150 FORMAT (/t CONDITION ESTIMATE IS: ',D26. 18)
C
C COMPUTE GAIN MATRIX L
C

CALL MAThUL(BT, 3,3 ,2*MODE,H,NH,2*MODE ,TEMP , 3)
C

CALL MATMUL(TEMP1,3,3,2*MODE,B, 188,3,RR,3)
C

DO 103 I = 1,3
DO 104 J=1,3

RR( I,J)=R( I,J)+RR( I,J)
104 CONTINUE
103 CONTINUE
C

CALL DLINDS(3,RR,3,RRINV,3)
C

CALL MATMUL(RRINV,3,3 ,3,TEMP1,3,2*MODE,BT,3)
C
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CALL MAT-MUL(BT,3 ,3 ,2"MODE,PHI ,188,2*MODE,L,3)
C

WRITE(41,*)''
WRITE(41,*) 'GAIN MATRIX L

WRITE(41,*) ' ROW 1 ROW 2 ROW 3'
DO 9155 1=1,2*MODE

WRITE(41,1040) (L(J,I),J=1,3)
9155 CONTINUE

WRITE(41,*) I

C
C
C COMPUTATION OF TORQUES AND COSTS
C
C
9000 COUNT = 0

TOTCST = 0. ODO
TIME =0.0

C
C
C SETS LOOP FOR THE NUMBER OF ITERATIONS NECESSARY
C TO OBSERVE THE SYSTEM FOR DESIRED LENGTH OF TIME ~~"

C
LOOP =INT((MIN'*60.0)/SAMPT)
PRNT =INT(((MIN*60. O)/SAMPT)/300. 0)
PRNTG =INT(((MIN*60. 0)/SAMPT)/1000. 0)

C
DO 200 N = 0, LOOP

TIME = DBLE(N)*SAMPT
C

IF(N. EQ. 0)THEN
IMPLSX = IMPX
IMPLSY = IMPY
IMPLSZ = IMPZ

ELSE
IMPLSX = 0.0OD
IMPLSY = 0. ODO
IMPLSZ = O.ODO

END IF
C
C
C CONTROL TORQUE EQUATIONS
C
C

SUTMi = 0. ODO
SUM2 = 0. ODO
SUM3 = 0.ODO

C
DO 210 CT = 1, MODE

CTADJ CT + (SMODE - 1)
5U121= SUMi + L(1,2*CT-1)*Xl(CTADJ) + L(1,2*CT)*X2(CTADJ)
SUM2 = U112 + L(2,2*CT-1)*X1(CTADJ) + L(2,2*CT)*X2(CTADJ)
SUM3 =SUM3 + L(3,2*CT-1)*X1(CTADJ) + L(3,2*CT)*X2(CTADJ)

210 CONTINUE
C
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C ***~ EVALUATION AT ZERO CONTROL
C
C IF(M. EQ. 1)THEN
C TCXO= .0D
C TCY = 0.0DO
C TCZ = O.ODO
C ELSE

TCX = SUM1*(-1.ODO)
TCY = SUM2*(-l. ODO)
TCZ = SUM3*(-l. ODO)

C ENDIF
C
C IF(N. EQ. 0)THEN
C WRITE (32,*) 'IMPULSE X AXIS, IMPULSE Y AXIS, IMPULSE Z AXIS'
C WRITE (32,*) '
C WRITE (32,1040) IMPLSX, IMPLSY, IMPLSZ
C WRITE (32,*) '
C WRITE (32, *) 'CONTROL TORQUES TCX, TCY, TCZ'
C WRITE (32,*)'
C ENDIF
C
C IF (N. LE. 50) THEN
C WRITE (32,2000) TIME, TCX, TCY, TCZ
C ENDIF
C
C IF (MOD(N,PRNTG).EQ.0) THEN
C WRITE (32,2000) TIME, TCX, TCY, TCZ
C ENDIF
C
C IF (N. LE. 20) THEN
C WRITE(30, 1035) rIME-,X1( 1),XI(5) ,X1( 10) ,X.( 15) ,X1(20)
C WRITE(31,1035) TIME,X2(i),X2(5),X2(10),X2(15),X2(20)
C ENDIF
C Lr (M. EQ. 1) THEN
C IF (MOD(N,PRNTG).EQ.0) THEN
C WRITE(30,1036) TIME,X1(9),X1(10),X1(11),X1(12),X1(13),X1(14)
C WRITE(30,1036) TIME,X1(1),X1(4),X1(14),X1(24),X1(34),X1(44)
C WRITE(31,1035) TIMIE,X2(1),X2(5),X2(10),X2(15),X2(20)
C ENDIF
C ELSE
C IF (MOD(N,PRNT).EQ.0) THEN
C WRITE(30,1036) TIME,X1(1),X1(4),X1(24),X1(44),X1(74),X1(94)
C WRITE(30,1036) TIME,X1(1),X1(4),X1(14),X1(24),X1(34),X1(44)
C WRITE(31,1035) TIME,X2(1) ,X2(5),X2(10),X2(15),X2(20)
C ENDIF
C ENDIF
C
C

IF (MOD(N,PRNTG).EQ.0) THEN
COUNT = COUN7+1

END IF
C
C
C SYSTEM COST FUNCTION CALCULATION
C
C
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SUNG = 0. ODO
ENERGY = 0. ODO
CNTCST = 0. ODO
COST = 0. ODO

C
DO 230 CF = 7,MODAL

MODEN(CF) = MODEN(CF)+(Xl(CF)**2)*LAMA(CF)+X2(CF)**2
SUMG = SUMC+(Xl(CF)**2)*LAIIA(CF)+X2(CF)**2

230 CONTINUE
C
C ENERGY = SUNG
C CNTCST = (TCX**2)*RM+(TCY**2)*RM+(TCZ**2)*RM
C COST = ENERGY + CNTCST
C TOTCST = TOTCST + COST
C
C IF (MOD(N,PRNTG).EQ.0) THEN
C WRITE(33,2000) TIME,ENERGY,CNTCST,COST
C ENDIF

IF(N. GE. (LOOP-5O) )THEN
WRITE (34,3002) MODETOTCST

END IF
C
C
C STATE UPDATE EQUATIONS
C
C

DO 220 KA = 7,MODAL
K = KA-6

C
XlT=PHII(1,1,KA)*X1(KA)+PHII(1,2,KA)*X2(KA)+B((2*K-l),)*~TCX+

+ B((2*K-1),2)*TCY+B((2*K-l),3)*TCZ4-BN((2*K-1),l)*IMPLSX+
+ BN((2*K-1) ,2)*IMPLSY+BN((2*K-1) ,3)'*IMPLSZ

C
X2T=PHII(2,1,KA)*X1(KA)+PHII(2,2,KA)*X2(KA)+B(2*K,l)*TCX+

+ B(2*K,2)*TCY+B(2*K,3)*TCZ+BN(2*K, 1)*IMPLSX+BN(2*K,2)*
+ IMPLSY+BN( 2*K, 3)*IMPLSZ

C
X1(KA) = X1T
X2(KA) = X2T

C
220 CONTINUE
C
200 CONTINUE
C

WRITE (35,3000) COUNT
RTOTAL = TOTCST

C WRITE (34,3002) MODE,RTOTAL
WRITE (34,3002) MODETOTCST

C
DO 235 K = 7,MODAL

RMODEN(K) = MODEN(K)
WRITE (31,3002) K, RMODEN(K)

235 CONTINUE
C
666 CONTINUE
C
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* IF(M. EQ. 1)THEN
* MODE=10
* EMODE=16
* ELSEIF(M. EQ. 2)THEN
* MODE=15

EMODE=21
* ELSEIF(M. EQ. 2)THEN
* MODE=20
* EMODE=26
* ELSEIF(M. EQ. 2)THEN
* MODE=25
* EMODE=31
* ELSEIF(M. EQ. 3)THEN
* MODE=30
* EMODE=36
* ELSEIF(M. EQ. 4)THEN
* MODE=35
* EMODE=41

IF(M. EQ. 1)TEN
* MODE=40
* EMODE=46
* ELSEIF(M. EQ. 2)THEN

MODE=45
* EMODE=51
* ELSEIF(M. EQ. 3)THEN
* MODE=50
* EMODE=56
* ENDIF
*505 CONTINUE

C
C *******7. **********************************************

C FORMAT STATEMENTS
C
C
700 FORMAT (','STARTING MODE NUMBER: ',12)
701 FORMAT (' ,'NUMBER OF MODES SCANNED: ',42)
702 FORMAT ( 'WNrTqF INPUT NODE: ',13)
703 FORMAT (','INITIAL R VALUE: ',E12.4)
704 FORMAT (','SAMPLING TIME: ',E12.4)
705 FORMAT ( ','DAMPING FACTOR: ',E12.4)
706 FORMAT ( ','LAST CONTROLLED MODE: ',12)
707 FORMAT ( ','OBSERVATION TIME: ',F5.1,' MINUTES')
708 FORMAT ( ','SIZE OF MODAL MODEL: ',13,' MODES')
1001 FORMAT(IX,A6)
1002 FORMAT(IX,8EI5. 8)
1004 FORMAT(lX,//)
1005 FORMAT(IX,60X,EII.5)
1008 FORMAT(IX,////)
1010 FORMAT(A1)
1035 FORMAT(' ',F7.2,2X,5(EI2.6,2X))
1036 FORMAT(' ',F7.2,1X,6(E11. 5,1X))
1040 FORMAT(' ',3(E15.8,5X))
1050 FORMAT(' ',4(E12.6,2X))
2000 FORMAT(X IF7.2,3X,3(E15.8,3X))
2001 FORMAT(' ,T5,E15.8)
3000 FORMAT(I4)
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3001 FORMAT(F7.2,2X,E12.5)
3002 FORMAT(13,2X,E12.5)
C
599 STOP

END
C
C
C SUBROUTINE TO MATRIX MULTIPLY
C
C

SUBROUTINE MATMUL(Ml,LD1,R1,C1,M2,LD2,C2,MP,LD3)
INTEGER Rl,C1,C2,LD1,LD2,LD3
REAL*8 MI(LD1,l),M2(LD2,1),MP(LD3,1),SUM

C
DO 650 1 = 1,Rl

DO 660 J = 1,C2
SUM = 0.0D0

DO 670 K = l,Cl
SUM = SUM+Ml(I,K)*M2(K,J)

670 CONTINUE
MP(I,J) = SUM

660 CONTINUE
650 CONTINUE

RETURN
END

C
C
C SUBROUTINE TO TRANSPOSE A MATRIX
C
C

SUBROUTINE MATRAN(MX,LDX,R1,CI,MT,LDT)
INTEGER RI,CI,I,J,LDX,LDT
REAL*8 MX(LDX,1),MT(LDT,1)

DO 680 I = I,RI
DO 690 J = 1,CI

MT(J,I) = MX(I,J)
690 CONTINUE
680 CONTINUE

RETURN
END
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APPENDIX B. KARHUNEN-LOEVE MODE PROGRAM

This program computes the Karhunen-Loeve mode shapes as discussed in Chapter

IV. Subroutine GENRAA is called to generate the covariance matrix of the modal co-

ordinates. RAA= E[x(t) aT(t)] . One subroutine from the IMSL math library

(DMRRRR) is used for matrix multiplication and two EISPACK subroutines are used

to compute the eigenvalues and eigenvectors of the covariance matrix.

The subroutine GENRAA as noted above generates the covariance matrix, RAA,

of the modal coordinates of the space station discussed in Chapter I. The algorithm:

" Computes the natural frequency, damping coefficient, y, and damped frequency of
each mode

" Computes the variances and covariances based on these parameters as given by
equations 19, 20. 21

The KL mode shapes are found by solving the eigenvalue problem, equation 12.

1aAA*Q 0 = (35)

where the matrix Q is:

Q = diag[[ c
7f [01 ...... ([7 4056 0  ] (36)

and

• . is the eigenvalue of the product, RAA * Q

* q represents the orthonormal eigenvectors

tRAA * Q is not a symmetric matrix so the eigenvalue problem is changed to:

IQ1 2 RAA Q1/2] [Q1 2 4)] [Q 2 4] (37)

Let

'7= Q1 2and (P = Q-1 2 (3S)

and finally:

[Q1 2 RAA Q1 2] ?7 (39)

54



The EISPACK routines for symmetric matrices are used to solhe the eigenvalue prob-

lem. equation 39, and equation 38 is used to compute the KL mode shapes.

This program is run by executing the following EXEC file:

* FORTVS2 KLMODES2

* FI 4 DISK THESIS INPUT B (PERM

* FI 6 DISK RAA OUTPUT T (PERM

* FI 8 DISK EIGVEC OUTPUT T (PERM

* Fl 10 DISK EIGVAL OUTPUT T (PERM

e Fl 09 DISK EIGEN ERROR B (PERM

e FI 12 DISK NATMODES D001 B (PERM

* FI 13 DISK KLAMAQ OUTPUT B (PERM

* Fl 14 DISK RAA OUTPUT (PERM

* F1 17 DISK NERR001 DATA A (PERM

* P DEF STOR 2M

* EXEC MATHPACK EISPACK

* EXEC TDISK 5 DIS

* LOAD KLMODES2 (START

PROGRAM KLMODE
************** Variable definitions**********************************
* lama = vector of natural frequencies

ugvex= matrix of the modal amplitudes and modal slopes *
* natmod=vector containing the natural mode shapes that correspond *

to the KL mode shapes
klama=vector of natural frequencies ordered according to th KL *

mode shapes *
* klmod=vector containing the largest eigenvectors in column of the *

eigenvector matrix eigenvec *

CHARACTER*6 NAM
DOUBLE PRECISION LAMA(100,1),UGVEX(684,100),D(100),E(100)
DOUBLE PRECISION KLMOD(100) ,Y,Nl,Q( 100,100)
DOUBLE PRECISION GAMIA,DAMP,W(50),L(50),M(50),B2(i,50),Q2(I00,I00)
DOUBLE PRECISION K(1,50),A,B,C,COEF,RAA(100,100),APB,APC,TEMPI
DOUBLE PRECISION TEMP2,TEMP3,TEMP4,TEMP5,TEMP6,Q2RAA( 100,100)
DOUBLE PRECISION EIGVEC(100,i00),Z(l00,l00),RAAQ(100,00)
DOUBLE PRECISION Q2RQ2(100,100),Q21NV(i00,i00),KLAMA(50)
INTEGER KK,LL,ZZ,MODR(100) ,MODC(100) ,MM,NATMOD(100),NUM
DO 160 1=1,100
DO 170 J=1,100
Q2(I,J)=0.ODOO
Q21NV(I,J)=O. ODOO
RAA(I,J)=O.ODOO

55



Q(I,J)=0. ODOO
170 CONTINUE
160 CONTINUE

READ(4,1001) NAM
READ(4,1002) (LAMA(I,1),I=1,100)
READ(4,1001) NAM
READ(4,1002) ((UGVEX(I,J),I=1,684),J=1,100)

C NODE IS THE DISTURBANCE INPUT LOCATION
C AND DILOC IS THE COMPUTED LOCATION OF THE MODAL SLOPE IN UGVEX

NODE=69
DISLOC = 4+6*(NODE-1)

C NUMODE IS THE NUMBER OF THE LAST MODE CONSIDERED
NUMODE = 56
CALL GENRAA(NUMODE,DISLOC,LAMA,UGVEX,W,L,M,B2,K,RAA)
WRITE( 16, 1005)W(1) ,L(1) ,M(1) ,B2(1,1) ,K( 1,1)
LL=2
KK 1
DO 150 J=7,NUMODE
Q2(KK,KK)=DSQRT(LAMA(J, 1))
Q2(LL,LL)l. ODOO
Q21NV(KK,KK)=l/Q2(KK,KK)
Q21NV(LL,LL)=l. ODOO
KK=KK+2
LL=LL+2

150 CONTINUE
CALL DMIRRRR( 100,100,Q2,100,100,100,Q2,100,100,100,Q,100)
CALL DMRRRR(100,100,RAA,100,100,100,Q,100,100,100,RAAQ,100)
DO 15 I=1,100
WRITE(14,1007) RAA(I,I)
WRITE(15,1007) Q2(I,I)

15 CONTINUE
CALL DMIRRRR(100,100,Q2,100,100,100,RAA,100,100,100,Q2RAA,100)
CALL DMRRRR(100,100,Q2RAA,100,100,100,Q2,100,100,100,Q2RQ2,100)
CALL TRED2(100,100,Q2RQ2,D,E,Z)
CALL TQL2(100,100,D,E,Z,IERR)
IF( IERR. NE. 0)THEN
WRITE(9,*)'ERROR=' ,I6

C PAUSE
END IF
CALL DMRRRR(100,100,Q21NV,100,100,100,Z,100,100,100,EIGVEC,100)
WRITE(6,1005)((RAA(I,J), J=1,100),I=1,100)
WRITE(8,1006)((EIGVEC(I,J) J=1,100),T=1,100)
WRITE( 10, 1007)(D( I), 1=1, 100)
MM 1
DO 10 1=100,1,-i
KLMOD(MM)=O. ODOO
DO 20 J=1,100
IF(DABS(KLMOD(MM)).LT.DABS(LrIGVEC(J,I)))THEN
KLMOD(MII)=EIGVEC(J, I)
MODR( M)=
MODC(MM)=J
Y=(DBLE(MODC(MM)))/2. ODOO
Il1INT( Y)
N1=Y-(DBLE( Ii))
IF(DABS(N1). NE.0. ODOO)THEN
NATMOD(MM)=(MODC(MiM)+1)/2 + 6
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ELSE
NATM1OD(MM)=MODC(MM)/2 + 6
END IF
ENDIF

20 CONTINUE
M>I=MM+1

10 CONTINUE
DO 30 I=1,100
WRITE(12,100) MODR(I),MODC(I),NATMOD(I),KLMOD(I)

30 CONTINUE
ZZ=5O
DO 180 I=1,100,2
KLAMA( ZZ)=LAMA(NATMOD( I), 1)
ZZ=ZZ -1

180 CONTINUE
WRITEC 13, 1005)(KLAMA(I) ,I=1,50)
NUM=7
DO 11 I=1,99,2
IF(DABS(KLMOD(I)). GT. DABS(KLMOD(I+1)))THEN
WRITE(17,200) NUM,DSQRT(2*(1-DABS(KLMOD(I))))
ELSE
WRITE(17,200) NUM,DSQRT(2*(1-DABS(KLMOD(I+1))))
ENDIF
NUM=NUM+ 1

11 CONTINUE
100 FOR>IAT(1X,I3,2X,I3,2X,I3,2X,E15.8)
200 FORNMAT(1X,I2,2X,E15.8)
1001 FORMAT(1X,A6)
1002 FORIHAT(1X,8El5. 8)
1003 FORMAT( 1X,5E15. 8//)
1006 FORMxAT(1X,5E15.8//)
1007 FORMAT(1X,5E15. 8/!)

STOP
END
SUBROUTINE GENRAA (NUMODE,DISLOC ,LAMA,UGVEX,W,L,M,B2,K,RAA)
DOUBLE PRECISION LAMIA( 100,1) ,UGVEX( 684, 100)
DOUBLE PRECISION GANIA,DAMP,W(50),L(50),M(50),B2(1,50)
DOUBLE PRECISION K(1,50),A,B,C,COEF,RAA(100,100),APB,APC,TEMP1
DOUBLE PRECISION TEMP2,TEMP3,TEMP4,TEMP5 ,TEMP6
DAMPO0. O1DOO
GAMA=DAMP/2. ODOO
DO 100 >ODE=7,NUMODE
W(MODE-6)=DSQRT(LAMA (MODE, 1))
L(,MODE-6)=W(MIODE-6)-!DSQRT( 1. 0DOO-GAMA*GAMA)
M( MGDE-6)=GAA*W( MODE-6)

100 CONTINUE
DO 110 J=7,NUMODE
B2( 1,J-6)=UGVEX(DISLOC+4*(J-1) ,J)
K( 1,J-6)=B2( 1,J-6)/L(J-6)

C K(1,J-6)=UGVEX(DISLOC,J)/L(J-6)
110 CONTINUE

DO 130 I=1,50
DO 140 J=1,50
A=M( I)+M(J)
B=L( I)-L(J)
C=L(I)+L(J)
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COEF=K(1, I)*K( 1,J)
APB=2*( A*A+B*B)
APC=2*( A*A+C*C)
RAA( 2*I-1,2*J-1)COEF*(A/APB-A/APC)
TEMP1=L( J)'*B/APB+L( J)*C/APC
TE>1P2=I( J)*~A/APB-A*1( J)/APC
RAA(2*I-1,2*J)=COEF*(TEMiP1-TEMP2)

TEMP4=( L( I)*L(J)*'A-L(TI)*1( J)'*C-L( I)*M( I)*G-M( I)*M(J)*A) /APC
RAA( 2*I, 2*J)=COEF*,'(TENIP3+TEMP4)
TEM,,P5=L( I)*C/APC-L( I)'*B/APB
TEMP6=M( I)'*A/APB-MN( I)*A/APC
RAA( 2*1 ,2*J-1)=COEF*(TEMP5-TEMP6)

140 CONTINUE
130 CONTINUE

RETURN
END
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